Engelhardt, U. & Stromburg, B. (1992). Acta Cryst. C48, 1074-1076.

- Engelhardt, U. & Stromburg, B. (1993). Acta Cryst. C49, 489-491.
- Hall, S. R. & Stewart, J. M. (1989). Herausgeber. Xtal2.6 User's Manual. Univ. Western Australia, Australia, und Maryland, VstA.
- Larson, A. C. (1967). Acta Cryst. 23, 664-665.
- Main, P., Lessinger, L., Woolfson, M. M., Germain, G. & Declercq, J.-P. (1977). MULTAN77. A System of Computer Programs for the Automatic Solution of Crystal Structures from X-ray Diffraction Data. Univ. York, England und Louvain, Belgien.
- Stewart, R. F., Davidson, E. R. & Simpson, W. T. (1965). J. Chem. Phys. 42, 3175-3187.

Acta Cryst. (1993). C49, 1646-1649

Structures of 3-Hydroxy-1-(2-methoxyethyl)-2-methyl-4-pyridinone, its Hydrochloride and 1-Ethyl-3-hydroxy-2-methyl-4-pyridinone Hydrochloride Hydrate

GAOYI XIAO, DICK VAN DER HELM* AND F. H. GOERLITZ

Chemistry and Biochemistry, University of Oklahoma, Norman, OK 73019, USA

ROBERT C. HIDER AND PAUL S. DOBBIN

Department of Pharmacy, King's College London, London, England

(Received 26 August 1992; accepted 4 February 1993)

Abstract

3-Hydroxy-1-(2-methoxyethyl)-2-methyl-4(1H)-pyridinone (1) exists mainly in the quinoid form with a small contribution from the aromatic zwitterion form, while 3-hydroxy-1-(2-methoxyethyl)-2-methyl-4(1H)-pyridinone hydrochloride (2) and 1-ethyl-3-hydroxy-2-methyl-4(1H)-pyridinone hydrochloride hydrate (3) are observed to occur in the aromatic form with a minor contribution from the quinoid resonance form. Different substituents at the ring N position do not have significant geometric effects in either the neutral molecules, as a group, or in the hydrochloride salts.

Comment

3-Hydroxy-4-pyridinones are currently being investigated as orally active iron chelators for the treatment

©1993 International Union of Crystallography Printed in Great Britain – all rights reserved of transfusion-induced iron overload and in particular thalassaemia (Porter, Huehns & Hider, 1989). As part of the continuing structural studies (Hider, Taylor, Walkinshaw, Wang & van der Helm, 1990; Xiao, van der Helm, Hider & Dobbin, 1992; Hider, Dobbin, Taylor, Hall, Porter, Saspong, Xiao & van der Helm, 1993) we report here the structural chemistry of the three title compounds. The crystal structure of (3) was determined earlier (Hider et al., 1990) but a more accurate structure is required for the present comparison studies. The chemical syntheses of these compounds have been described elsewhere (Hider, Kontoghiorges & Silver, 1982). Resonance forms of the title molecules are shown below, where $R_1 = (CH_2)_2 OCH_3$, $R_2 = CH_3$ for (1) and (2), and R_1 $= CH_2CH_3, R_2 = CH_3$ for (3).

In structure (1), the C(3)-O(1), C(3)-C(4) and C(4)—O(2) bond distances are essentially the same as in the other two neutral 2-methyl congeners (Hider et al., 1990; Nelson, Karpishin, Rettig & Orvig, 1988; Nelson, Rettig & Orvig, 1989; Xiao, van der Helm, Hider & Dobbin, 1992). This implies that different alkyl substitutients at the ring N position can be expected to have little effect on the pK_a values of 3-hydroxy-4-pyridinones and their affinities for metal ions. Like other 3-hydroxy-4-pyridinones, the heterocyclic ring of the neutral ligand (1) is mainly in the quinoid form (b) (see scheme above). However, C(4)—O(2) bond is significantly longer the [1.262 (2) Å] than a normal ketone bond (1.210 Å), and therefore an aromatic resonance form (e) contributes to the structure as well, giving a partial negative charge to O(2) and a partial positive charge to N(1). This zwitterionic resonance form is more pronounced for 3-hydroxy-4-pyridinones than for 3-hydroxy-2-pyridinones (Xiao et al., 1992) and the difference is believed to be the cause of the larger

> Acta Crystallographica Section C ISSN 0108-2701 ©1993

complexation constants of the former compounds. Resonance form (e) also makes it possible for the molecule to form a strongly hydrogen-bonded dimeric unit.

In structures (2) and (3), the bond distances in the common part are comparable with each other. A significant delocalization from the C(4)—O(2) bond towards the ring occurs upon protonation of the carbonyl O(2) atom. Furthermore, the C(3)—C(4) and C(4)—C(5) single bonds become shorter while the C(2)—C(3) and C(5)—C(6) double bonds become longer. The main resonance form, therefore, is aromatic (a). Nevertheless, the longer C(3)—O(1) bond distance compared to the C(4)—O(2) bond, and longer C(3)—C(4) and C(4)—C(5) bonds compared to the C(2)—C(3) and C(5)—C(6) bonds in the protonated ligands (2) and (3), suggest a contribution from resonance form (d) (see scheme above).

Fig. 1. An ORTEP (Johnson, 1976) plot of a single molecule of (1).

Experimental

Compound (1) Crystal data C₉H₁₃NO₃ $M_r = 183.21$ Monoclinic $P2_1/a$ a = 15.158 (4) Å b = 8.435 (2) Å c = 7.277 (1) Å $\beta = 103.52$ (1)° V = 904.6 (6) Å³ Z = 4 $D_x = 1.35$ Mg m⁻³

Cu $K\alpha$ radiation $\lambda = 1.54178$ Å Cell parameters from 48 reflections $\theta = 19-48^{\circ}$ $\mu = 0.851 \text{ mm}^{-1}$ T = 138 (2) K Needle $0.31 \times 0.12 \times 0.10 \text{ mm}$ Colorless

Data collection

Enraf-Nonius CAD-4	$\theta_{\rm max}$
diffractometer	h =
$\theta/2\theta$ scans	k =
Absorption correction:	<i>l</i> =
none	3 sta
1853 measured reflections	fr
1853 independent reflections	in
1577 observed reflections	
$[I > 2\sigma(I)]$	

Refinement

Refinement on FFinal R = 0.036wR = 0.047S = 1.801577 reflections 170 parameters All H-atom parameters refined

Compound (2)

Crystal data C₉H₁₃NO₃.HCl $M_r = 219.67$ Orthorhombic $P2_12_12_1$ a = 11.865 (3) Å b = 12.174 (4) Å c = 7.127 (2) Å V = 1029.5 (9) Å³ Z = 4 $D_x = 1.42$ Mg m⁻³

Data collection

Enraf-Nonius CAD-4 diffractometer $\theta/2\theta$ scans Absorption correction: none 1265 measured reflections 1265 independent reflections 1139 observed reflections $[I \ge 2\sigma(I)]$

Refinement

Refinement on FFinal R = 0.033wR = 0.039S = 1.411139 reflections 183 parameters All H-atom parameters refined

Compound (3)

Crystal data $C_8H_{11}NO_2.HCl.H_2O$ $M_r = 207.656$ $h = 0 \rightarrow 19$ $k = 0 \rightarrow 10$ $l = -9 \rightarrow 9$ 3 standard reflections frequency: 120 min intensity variation: 2.4%

 $= 75.0^{\circ}$

 $w = 1/\sigma^{2}(F)$ $(\Delta/\sigma)_{max} = 0.071$ $\Delta\rho_{max} = 0.26 \text{ e } \text{\AA}^{-3}$ $\Delta\rho_{min} = -0.19 \text{ e } \text{\AA}^{-3}$ Atomic scattering factors from *SHELXS*86 (Sheldrick, 1986)

Mo K α radiation $\lambda = 0.71073$ Å Cell parameters from 48 reflections $\theta = 11-15^{\circ}$ $\mu = 0.357 \text{ mm}^{-1}$ T = 138 (2) K Needle $0.25 \times 0.10 \times 0.10 \text{ mm}$ Colorless

 $\theta_{\text{max}} = 26.5^{\circ}$ $h = 0 \rightarrow 14$ $k = 0 \rightarrow 15$ $l = 0 \rightarrow 8$ 3 standard reflections frequency: 120 min intensity variation: 5.7%

 $w = 1/\sigma^{2}(F)$ $(\Delta/\sigma)_{max} = 0.065$ $\Delta\rho_{max} = 0.37 \text{ e } \text{\AA}^{-3}$ $\Delta\rho_{min} = -0.39 \text{ e } \text{\AA}^{-3}$ Atomic scattering factors from *SHELXS*86 (Sheldrick, 1986)

Cu $K\alpha$ radiation $\lambda = 1.54178$ Å

1648

Compound (2) N(1) 0.8157 (2) C(2) 0.8951 (2) C(3) 0.8591 (2)

0.7441 (2) 0.6663 (2)

0.7044 (2)

0.8483 (3) 0.8760 (3)

0.7784 (2)

0.7994 (3)

1.0177 (2) 0.9401 (2)

0.7167 (2)

0.46592 (6)

C(2) C(3) C(4) C(5)

C(6) C(7) C(8)

0(9)

C(10) C(11)

0(1)

O(2)

Cl(12)

0.6680 (2)

0.5879 (2) 0.4802 (2)

0.4542 (2) 0.5390 (2)

0.6442 (2)

0.7838 (3) 0.8462 (2) 0.8521 (2)

0.9091 (3)

0.6145 (3) 0.4029 (2)

0.3489 (2)

0.32538 (6)

0.8626 (3) 0.8868 (4)

0.9091 (5)

0.9080 (4) 0.8871 (5) 0.8649 (4)

0.8250 (5) 1.0015 (5) 1.1140 (3)

1.2854 (5)

0.8926 (5)

0.9269 (4)

0.9266 (3)

0.9028 (1)

0.0251 (2)

REGULAR STRUCTURAL PAPERS

Monoclin	ic	Cel	l parameters fro	om 48	Compound ((3)			
P_{1}/c	10		eflections		N(1) -	-0.0518 (2)	0.39875 (7)	-0.2171 (1)	0.0235 (4)
F21/C		Δ_	10 310		C(2)	0.1303 (2)	0.43594 (8)	-0.1805 (2)	0.0236 (4)
a = 6.636	ol (4) Å	0 -	19-31		C(3)	0.1543 (2)	0.51004 (8)	-0.2382 (2)	0.0242 (4)
b = 17.11	.5 (1) A	μ =	5.146 IIIII		C(4) -	-0.0087 (2)	0.54708 (8)	-0.3267(2)	0.0250 (4)
c = 9.102	4 (5) Å	<i>T</i> =	= 138 (2) K		C(5) -	-0.1937 (2)	0.50770(9)	-0.3309 (2)	0.0290 (4)
$\beta = 98.47$	73 (5)°	Nee	edle		C(6) -	-0.2104(2)	0.43338 (9)	-0.3028 (2)	0.0283 (4)
V = 1022	5(1) Å ³	0.2	$8 \times 0.12 \times 0.0$	8 mm	C(7) = -	-0.0821(3)	0.31755(6)	-0.1039(2) -0.0108(2)	0.0350(5)
7 - 4		Col	orless		C(0)	0.1070(3)	0.3986(1)	-0.0802(2)	0.0328 (5)
L = 4					0(1)	0.3398 (2)	0.54296 (7)	-0.2054 (1)	0.0341 (4)
$D_x = 1.55$	o wig m				O(2)	0.0264 (2)	0.61815 (6)	-0.3773 (1)	0.0321 (4)
					O(10)	0.4614 (2)	0.68089 (7)	-0.2776 (2)	0.0403 (4)
Data colle	ection				Cl(11)	0.66465 (6)	0.68547 (2)	-0.56760 (4)	0.0305 (1)
Enraf-No	nius CAD-4	θ_{ma}	_x = 75.0°			T-11-0 (7	amatana (Å o	1
diffract	ometer	h =	$0 \rightarrow 8$			Table 2. C	seometric par	ameters (A,)
AITA soon	c	 k =	$0 \rightarrow 21$				(I)	(2)	(3)
0/20 Scall		κ – 1 –	11 11		N(1) - C(2)		1.377 (2)	1.367 (4)	1.363 (2)
Absorptio	on correction:	<i>l</i> –	$-\Pi \rightarrow \Pi$		N(1) - C(6)		1.361 (2)	1.353 (4)	1.353 (2)
none		3 S	tandard reflection	ons	N(1) - C(7)		1.482 (2)	1.490 (4)	1.492 (2)
2096 mea	sured reflection	ons f	requency: 120 1	min	C(2)-C(3)		1.371 (2)	1.391 (4)	1.391 (2)
2096 inde	ependent reflect	tions i	ntensity variatio	on: 0.9%	C(2)—C(9)				1.490 (2)
1920 obse	erved reflection	ns			C(2)-C(11)		1.501 (2)	1.492 (4)	1 401 (2)
$[I>2\sigma]$	(I)				C(3) - C(4)		1.439 (2)	1.400 (4)	1.401 (2)
$[1 \ge 20]$	(1)]				C(3) = O(1)		1.359 (2)	1.333 (3)	1.340 (2)
					C(4) = C(3)		1.424 (2)	1.394 (4)	1.392 (2)
Refinemer	nt				C(4) = O(2)		1.202 (2)	1.332 (3)	1.333(2) 1.371(2)
Refineme	nt on F	w =	$= 1/[\sigma^2(F) + 0($	$0001F_{0}^{2}$	C(7) = C(8)		1.506 (2)	1.507 (5)	1.511 (2)
Einel D -	0.025	(А	$f_{(0)}(\mathbf{r}) = 0.14$	500110]	C(8) - O(9)		1.418 (2)	1.411 (4)	
	0.035		$(0)_{\text{max}} = 0.14$	_3	O(9)-C(10)		1.418 (2)	1.429 (4)	
wR = 0.04	4/	Δho	$p_{max} = 0.34 e A$	* ~	., .,				
S = 1.77		Δho	$p_{\min} = -0.30 e$	A ⁻³	N(1)C(2)-	-C(3)	118.6 (1)	118.5 (2)	118.7 (1)
1920 refle	ections	Ato	omic scattering	fac-	N(1) - C(2) -	-C(9)			121.0(1)
174 parat	meters	t	ors from SHEL	XS86	N(1)C(2)-	-C(11)	119.4 (1)	121.3 (2)	101.0 (1)
All H-ato	m narameters	re- (Sheldrick, 1986	5)	N(1) - C(6) - C(7)	-C(5)	122.4 (1)	121.0 (3)	121.2(1)
finad	in purumeters			-)	N(1) - C(7) - C(7)	-C(8)	112.0(1) 120.4(1)	112.7(3) 121.2(2)	112.3(1) 121.4(1)
meu					C(2) = N(1) = C(2) = N(1) = C(2) = N(1) = C(2) =	-C(0)	120.4 (1)	121.2(2) 121.5(2)	121.4(1) 121.0(1)
					C(2) - C(3) - C(3)	-C(4)	122.02(0)	120.8 (2)	120.5 (1)
Table 1	Fractional	atomic coo	rdinates and	equivalent	C(2) - C(3) - C(3)	-0(1)	119.3 (1)	116.8 (2)	116.7 (1)
Table 1.	Tractional			equivatent	C(3)-C(2)-	-C(9)			120.3 (1)
	isotropic i	thermal par	ameters (A ²)		C(3)-C(2)-	-C(11)	122.0 (1)	120.1 (2)	
		1557			C(3)—C(4)—	-C(5)	114.6 (1)	118.5 (2)	118.6 (1)
	U_{eq}	$= \frac{1}{3} \Sigma_i \Sigma_j U_{ij} a_{ij}$	$a_j^{-}\mathbf{a}_i \cdot \mathbf{a}_j$.		C(3)—C(4)—	-0(2)	120.8 (1)	117.1 (2)	116.9 (1)
	r	v	7	U	C(4) - C(3) - C(3)	-0(1)	117.6 (1)	122.3 (2)	122.8 (1)
Compound	10	у	2	€eq	C(4) - C(5) - C(5)	-C(6)	120.9(1)	119.3(2) 124.4(2)	119.5 (1)
N(1)	0.72184 (7)	0.2127(1)	0.1953 (2)	0.0206 (3)	C(3) = C(4) = C(4)	-C(2)	124.0(1)	124.4(2) 1173(2)	124.0(1) 1175(1)
C(2)	0.80545 (9)	0.2399 (2)	0.1578 (2)	0.0201 (4)	C(0) = R(1) = C(7) = C(8) =	-0(9)	109.7 (1)	108.8 (2)	117.5 (1)
C(3)	0.86874 (9)	0.3237 (2)	0.2869 (2)	0.0204 (4)	C(8) - O(9) -	-C(10)	110.9 (1)	111.6 (2)	
C(4)	0.85130 (9)	0.3876 (2)	0.4583 (2)	0.0212 (4)	-(0) -(1)	-()			•
C(5)	0.7627 (1)	0.3565 (2)	0.4843 (2)	0.0247 (4)	Tal	ble 3. Hva	drogen-bondir	ng geometry (.	A, °)
C(6)	0.70216 (9)	0.2709 (2)	0.3556 (2)	0.0247 (4)					
C(7)	0.6494 (1)	0.1221 (2)	0.0658 (2)	0.0226 (4)	$D - H \cdots A$	1	$D \cdots A$	$\mathbf{H} \cdot \cdot \cdot \mathbf{A}$	$D - H \cdots A$
C(8)	0.57964 (9)	0.2274 (2)	-0.0573 (2)	0.0247 (4)	Compound((1) S <i>ra</i> is	a (71 (a)	1.00.(0)	140 (2)
U(9)	0.5529(1)	0.3110(1)	-0.1002(1) -0.3150(2)	0.0270(4)	O(1)—H····C	J(2')	2.671 (2)	1.89 (2)	148 (2)
C(10)	0.3338(1)	0.4000(2)	-0.3130(2) -0.0212(2)	0.0320(4) 0.0253(4)	Commoned	(2)			
O(1)	0.95216(7)	0.3488(1)	0.2534 (1)	0.0254 (4)		(<i>∠)</i> ∽iii	2 054 (2)	2 35 (4)	152 (4)
O(2)	0.91204 (6)	0.4628 (1)	0.5737 (1)	0.0267 (4)	$O(1) - H \cdots O(2)$	-1 -1	2 995 (2)	2.33 (4)	175 (2)
/			• •	. /	0(2)-11(-1		2.1 , (3)	

	Compound (3)							
0.0200 (7)	$O(1) - H \cdot \cdot \cdot O(10)$	2.610 (2)	1.93 (2)	160 (3)				
0.0197 (8)	$O(2) - H \cdot \cdot \cdot Cl^{iii}$	2.977 (2)	2.10 (2)	173 (2)				
0.0210 (7)	HO(10)-H···Cl	3.137 (3)	2.36 (3)	172 (3)				
0.0199 (7)	$HO(10) - H \cdot \cdot \cdot Cl^{iv}$	3.154 (1)	2.34 (3)	166 (3)				
0.0233 (8)	Summatmy and any (i	\mathbf{x}	π (ii) $\pi + 1$	1 - 1 2 - 7				
0.0226 (8)	Symmetry codes: (i) $2 - x$, $1 - y$, $1 - z$; (ii) $x + \frac{1}{2}$, $\frac{1}{2} - y$, $2 - z$;							
0.0248 (9)	(11	1) $x = 1, y, z; (1v) $	$x, \frac{3}{2} - y, z + \frac{1}{2}.$					
0.0258 (9)								
0.0279 (6)	The title compou	nds were crysta	illized from eth	anol solution				
0.0320 (10)	equilibrated with	heptane at 277	K. Data were	collected at				
0.0250 (9)	138 (7) K and co	reacted for Lore	entz and polariz	ation effects				
0.0302 (7)	150(2) K and CO							
0.0264 (6)	but not for absorption	otion. The struct	tures were deter	mined by di-				

rect methods using SHELXS86 (Sheldrick, 1986) and refined by

a full-matrix least-squares routine (*SHELX*76; Sheldrick, 1976). All H atoms were located from the difference Fourier map and refined isotropically.

Support from the National Institute for General Medical Sciences (GM-21822) and the British Technology Group is gratefully acknowledged.

Lists of structure factors, anisotropic thermal parameters, H-atom coordinates, complete geometry and stereoscopic views of all molecules have been deposited with the British Library Document Supply Centre as Supplementary Publication No. SUP 71069 (29 pp.). Copies may be obtained through The Technical Editor, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England. [CIF reference: CD1028]

References

- Hider, R. C., Dobbin, P. S., Taylor, P. D., Hall, A. D., Porter, J. B., Saspong, P., Xiao, G. & van der Helm, D. (1993). J. Med. Chem. Submitted.
- Hider, R. C., Kontoghiorges, G. & Silver, J. (1982). Br. Patent Appl. 2 118 176A.
- Hider, R. C., Taylor, P. D., Walkinshaw, M., Wang, J. L. & van der Helm, D. (1990). J. Chem. Res. (S), pp. 316-317.

Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.

- Nelson, W. O., Karpishin, T. B., Rettig, S. J. & Orvig, C. (1988). Can. J. Chem. 66, 123-131.
- Nelson, W. O., Rettig, S. J. & Orvig, C. (1989). Inorg. Chem. 28, 3153-3157.
- Porter, J. B., Huehns, E. R. & Hider, R. C. (1989). Boillere's Clin. Haematol. 2, 257–292.
- Sheldrick, G. M. (1976). SHELX76. Program for crystal structure determination. Univ. of Cambridge, England.
- Sheldrick, G. M. (1986). SHELXS86. Program for the solution of crystal structures. Univ. of Göttingen, Germany.
- Xiao, G., van der Helm, D., Hider, R. C. & Dobbin, P. S. (1992). J. Chem. Soc. Dalton Trans. pp. 3265-3271.

Acta Cryst. (1993). C49, 1649–1652

Structure of a 6-Tetrahydroxybutyl-Substituted 5,6,7,8-Tetrahydropteridine

ROY L. BEDDOES, JAMES R. RUSSELL, C. DAVID GARNER AND JOHN A. JOULE*

Chemistry Department, University of Manchester, Manchester M13 9PL, England

(Received 2 September 1992; accepted 11 February 1993)

Abstract

The crystal structure of 2-acetamido-5-benzyloxycarbonyl-3,4,5,6,7,8-hexahydro-4-oxo-6-(D-*arabino*tetrahydroxybutyl)pteridine tetraacetate, (5), shows

© 1993 International Union of Crystallography Printed in Great Britain – all rights reserved that reduction of 2-acetamido-3,4-dihydro-4-oxo-6-(D-arabino-tetrahydroxybutyl)pteridine tetraacetate, (4), with sodium cyanoborohydride in the presence of benzyl chloroformate achieves saturation of the pyrazine ring with regioselective protection at nitrogen N(5).

Comment

We are developing a synthetic route (Rowe, Garner, & Joule, 1985; Larsen, Garner & Joule, 1989; Larsen, Rowe, Garner & Joule, 1989; Russell, Garner & Joule, 1992a,b,c) to Moco (Rajagopalan, 1991; Johnson, 1980; Gardlik & Rajagopalan, 1990), (1), the cofactor of all molybdoenzymes except nitrogenase. The cofactor comprises a dihydropteridine carrying a functionalized side chain at C(6) on which are situated the S atoms which coordinate the metal centre. It is planned that the production of the requisite dihydropyrazine oxidation level, cf. (1), will involve (a) reduction of a precursor pteridine to the 5,6,7,8-tetrahydro level then (b) regioselective reoxidation to dihydro level, *i.e.* the introduction of unsaturation at N(5).

We have shown (Beddoes, Russell, Garner & Joule, 1993; Russell, Garner & Joule, 1992*a,b*) that reduction of quinoxalines of the general form (2) in the presence of benzyl chloroformate generates tetra-hydroquinoxalines, (3), with the N atom which is remote from the substituent, protected as a urethane. In seeking to clarify both the stage at which the reduction should be carried out and also whether a comparable regiochemical preference would be found in a pteridine, we have reduced 2-acetamido-3,4-dihydro-4-oxo-6-(D-*arabino*-tetrahydroxybutyl)-pteridine tetraacetate, (4), with sodium cyanoborohydride in the presence of benzyl chloroformate in methanol. A mixture of diastereoisomers was formed, recrystallization of which produced material